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We give approximate analytical solutions for the binary laminar boundary layer; these solu- 

tions are based on the Karman-Pohlhausen method and on the method of relative correspon- 

dence. The approximate solutions are compared with certain numerical solutions and with 

the experiment. 

Analysis of theoretical references on heat and mass transfer in a binary laminar boundary layer 

under conditions of natural convection leads to the following conclusions. 

The numerical solutions - because of their discrete nature and the rather narrow range of investi- 

gated parameters -do not permit generalization nor the derivation of analytical working formulas. In 

[i], for example, the boundary layer in the case of vapor condensation from a mixture with air is treated 

exclusively as a purely diffusional phenomenon, with the thermal resistance of the boundary layer neglected; 
it is only the thermal resistance of the condensate film that is taken into consideration. The calculation 

is performed for a narrow range of additions of air to the vapor (up to 5% of the weight content of the air) 

and with three temperature differences. The determination of the heat-transfer coefficient is associated 

with the extremely difficult method of successive approximations. A solution is derived in [2] for three 

Grashof numbers and here the transfer of energy as a consequence of the enthalpy difference is neglected, 

as are the Dufour and Soret effects. The author's assumption that the mass velocity of the wall is equal 

to zero (pv w = 0) led to the fact that the intensity of the heat and mass flow is independent of the concen- 
tration difference. Minkowycz and Sparrow [3], examining heat transfer in the condensation of water vapor 

from a vapor-air mixture, took the thermal diffusion effect into consideration in calculating the heat flow. 

However, their calculations applied only to one value of the longitudinal coordinate (x ~ 150 ram) and to 

two values for the mass content of the air in the vapor (m a = 0.005 and 0.i). 

The injection of hydrogen, helium, water vapor, and carbon dioxide into the air and the injection of a 

liquid into a solution with Pr = i0 and Sc = 500 were investigated by a numerical method by Gill et al. [4] 

for one value of Tw/T~ = I.i. Here the authors failed to take into account the Dufour and Sorer effects in 

their expressions for the heat and diffusion flows. 

Attempts at analytical solutions with the use of integral boundary-layer equations and the Karman 

-Pohlhausen method were undertaken in [5-7]. Wilcox made no provision for thermal diffusion and energy 

transport as a consequence of the enthalpy difference for the components of the mixture in his energy equa- 

tion, and in the diffusion equation he failed to make any provision for the Soret effect. Moreover, it was 

assumed in the solution that Pr = So. Somers solved a system of equations analogous to that of Wilcox; 

however, Pr ~ Sc. In the Baron and Hahn solution provision is made for the diffusive conduction of heat 
and for the effect of thermal diffusion; the transport of energy resulting from the enthalpy difference is 

dropped from consideration. However, the errors of this last-cited reference led to imaginary results 

in the case of suction (condensation) and when Le ~ i. 

It is the purpose of this paper to derive the analytical functions to calculate the coefficients of heat and 

and mass transfer for a binary laminar boundary layer; these relationships should be convenient for prac- 

tical purposes. In describing theprocess we sought to account for all forms of energy and mass transport, 
including the transfer of enthalpy as a consequence of the concentration gradient, the Dufour and Sorer 
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effects  of thermal  diffusion. No provis ion was made in the solution for the work of expansion and viscous 
dissipation;  the proper t ies  of the mixture were assumed to be constant,  with the exception of the variat ion 
in density in the t e rm which provides  for the mass  forces .  The integral equations for the binary boundary 
l ayer  therefore  assume the following form.  

The momentum equation 

h h h 

dxd J = g~t f (t a_ G) dg q- gf3w, ~ (m,--mi~o)dg--v Ou , u2dv (1) 
ag ~, 

0 0 0 

where ~ is the coefficient of volume expansion, associated with the change in density as a resul t  of the 
concentrat ion gradient .  In par t i cu la r ,  for  ideal mixtures  

~r= ( M~ M2 

The diffusion equation for the active component is 

h 

d j' u 
p ~ ~ (m, - -  m ~ )  @ = h ~  + p~v~ (m,w - -  m ~ ) ,  (3) 

0 

where the diffusion flow of the active component,  with the considerat ion of the effect of thermal  diffusion 
(the Soret effect) is defined as 

], = --pD L[ Otniog -t- atmi(1T--mO ogOt ] . (4) 

The energy  equation 

h h 

d f bl(~_tm)d~@ Cpt--Cp2 f . Ot qw dx o~cp , I, ~ dy--  cpO~ + ~vw (t~--  too), 
0 0 

(s) 

where the convection heat flow qw at the wall is 

=--~, O_t__t w + atRMT w q~ Og 427MIM a- ],w' 
(6) 

The relationship between the normal  velocity v w at the wall and the diffusion flow of the active c o m -  
ponent 1, in the case of a semipermeable  wall, can be wri t ten as 

]tw v~ - (7) 
p~ (1-- tniw ) 

The distribution of veloci t ies ,  t empera ture ,  and the mass  fract ion of component 1 in the boundary layer  is 
taken in the form 

u = u, ~ , (S) 

t--  t= = (G --G) (1-- -~) 2 , (9) 

tni--ml- ~- (rniw-- ml-) (1-- -~  ) 2 " (10) 

Integration of (1), (3), and (5), in conjunction with (4), and (6)-(10), is accomplished in the assumption 
that the dynamic and thermal  boundary layers  are  of equal thickness and this, as will be demonstrated be-  
low, introduced no significant e r r o r  into the express ion  for the coefficients of heat and mass  t r ans fe r  in the 
investigated range for P r  = 0.6-10. The solution of the sys tem will then be 
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where 

I Pr 1-1"4 
- -=x  I +  ~t t~,--t~ ~l(0.952q_t_Pr ) , (11) 

6,~_3.93(Gr~Pr)- l /4[l+~,~mi~--mlool]- l /4  [ Pr ]--I/4 
X ~ - -  13t t~ --  t~o ~" ~1 (0.952q # Pr) ] ' (12) 

Relax - Um~X = 0.766 U~ 1 q- 
v 13 t t~ --  t~ ~ [~q (0.952~q + Pr)] 1/2 ' 

{ ( 1 )  [(m~'~ - m~*) ~ -]- S~ q =  1-t--pLe -1 Du-} 1--rni~ 

§ cv,--cp2 [~ (1__ 1 ) 2 J} Cp ~ ~ (tnl~--rni~)q- ~ So . (14) 

The ratio of the boundary- layer  th icknesses  ~ = 5 /5  m is de te rmined  for ~ -< 1,0 (5 m > 5) with an 
accuracy  of up to 5% f rom the quadrat ic  equation 

{1 + A [So -- 2,7 (mi~ --  r&~)]} ~ --  4 I 1 + A So --  (mt~ --  rni~ ) pLe -1 

X (1.175 Du+ 1.175 : c p z . ]  + ~  - 1-- m,~o_l + 1 

cv I 

+ 5 1 1 + A S o - - 0 . 4  pLe-~S~ 1--mir r a ~  - -  m ~  ~ d  = O, ( 1 5 ' )  

where 

( 1  2%,--%2 ) 
A = p Le -x 1-- m i ~  + Du q- 3 c. " 

In calculating ~ from (15'), there should be a minus sign in front of the radical. 

For 1 -< ~ -< 3.5 (6 > 6 m) the value of ~ is found - correct to 2% - from the third-degree equation for 

1"211--0"195=9Le-1~ ll--mI~ [ l + - m ~  m~S~ + ]  

• {-~-+ 9Le-i [ ( m l ~ -  rnI~)q--?-1 ( Du'} 12tnt~ ) 

% �9 (15") 

Substituting the value of the t empera tu re  gradient  &/Syl w = - (2/5)(t  w - t ~) f rom (9) and the mass  
content  of component  1 (at the wall) @n I/By [w = - ( 2 / 5 m ) ( m l w  - m1 ~) f rom (10) into (6) for  the convection 
heat  flow at the wall ,  in conjunction with (11) and (12) we find the d imens ionless  local hea t - t r ans fe r  coef-  
f icient 

Nu~ = 0.508 (Gr~ Pr) 1/4 [1 + - -  ~rn ~tw--ml% 1 ]I/4 

Pr ]l/4{l+ Le_~Du[(ml _mi=)~=_ So]}" 
x [ vl (0.952~1 q- Pr) (m) 

The local mass-transfer coefficient a m is determined from the relationship 

WI~ = J1~ + P~vJn1~ = 0~ar~ (m~ -- mj~), 

where Wiw is the total mass flow at the wall, and bearing in mind (7), we find that it is equal to 

WI~ - ]lw 
1 -  trqw " 

(17) 

(is) 
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Fig. 1. Injection of hydrogen,  helium, water  vapor,  and carbon 
dioxide into the a i r  and the injection of liquid into the solution 
under the conditions of a binary laminar  boundary layer  in the 
case of natural  convection: 1) numerica l  solution [4] with con-  
s iderat ion of the variabi l i ty  of  the physical  pa r ame te r s  of the 
mixture;  2) the same,  with constant physical  p a r a m e t e r s  for the 
mixture ,  with the exception of the change in density; 3) the approxi-  
mate solution (16) for Du = 0 and So = 0; 4) solution (30) obtained 
by the method of relative cor respondence;  a) H 2 - a i r ,  Scw/Pr  
= 0.35-2.5; b) H e - a i r ,  S c w / P r ~  = 0.35-2.5; c) HzO-a i r ,  Sc w 
/ P r ~  = 0.625-0.755; d) CO2-a i r ,  S c w / P r ~  = 1.2-1.89; e) solution, 
Proo = 10, Sc~ = 500. 

Having introduced the values of the temperatures and mass-concentration gradient at the wall into 

(4), we have 

Wt~- -  2pwD [(mi~--ml~)~ q-Sol 1 ,  (10) 
1-- tnl~ 6 

which with considerat ion of (11) and (17) yields the local Sherwood number  

13t tw - - t=  g n (0,952n q- Pr)J 

(m,~ - -  m, =) ~ + So 
(20) 

(1-- miw)(mi~-- m~)  

The relationship between Sherwood and the Nusselt  numbers  is established f rom compar ison  of (16) 

and (20), i .e. ,  

Sh~ _ (miw --  rnl~) ~ + So 
Nu~ (1-- mi=) (mtw - -  ml=){1 + Le -1Du [(mtw-- rot=) ~ q- So]} 

With phase conversions or chemical reactions at the wall, the "total" heat flow removed (or brought 

in) through the wall is expressed as 

q*~ = qw q- rWtw, (21) 

where r is the heat of phase convers ion or chemical  react ion.  The derivat ion of the hea t - t r ans fe r  coef -  
ficient with respec t  to the "total" heat flow is governed by two c i rcums tances .  In engineering hea t - t r ans fe r  
calculat ions theprob lem in the condensation of a vapor  f rom the v a p o r - g a s  mixture is always reduced to 
the determinat ion of the total heat flow removed by the coolant. In the case of liquid evaporat ion as a r e -  
sult of the heat introduced by the gas flow, this problem is el iminated,  since 

Ot 
q ~ = - - L ~ - I  ~.rWlw. 

~ 
When the liquid is evaporated by the heat coming off the solid wall (T w > Too), the "total" heat flow is de-  
termined f rom (21). In addition, the determinat ion of the conditional hea t - t r ans fe r  coefficient through the 
use of (21) enables us to compare  the theoret ical  solutions with available experimental  data on the t rans fe r  
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Fig. 2. "Total" heat transfer (with consideration of the heat of phase conversion) on condensation 

of water vapor from a mixture with air under conditions of laminar natural convection; a) formula 

(22); b) formula (31); i) Motulevich experiments [12] on a vertical tube I = 0.5 m; 2) Langen ex-- 

periments [14] on a horizontal tube d = 30 ram; 3) Othmer experiments [13] on a horizontal tube 

d = 76.8 ram: 

L* = [1~ ~m tnlw--rnl~ 1.]1/4[ Pr ]1/4 [1+. Le-l(mi _mlj~(Du_t - K ) ] ;  
~t tw --  t~ ~ ~ (0.952~ @ Pr) 1 --  mlw 

H* = 1 -~ ( - ~ - )  m l a , -  rn:to~ ]1/4 

X [ 0.952-t-Pr ]I/4[ Pr2/2 K_O.406(M211/3 l 
0,952 q Sc 1 --  mxw ~ \ M1 ] 

of heat in the case of vapor condensation from vapor-gas mixtures in which the heat flow had been mea- 

sured with consideration of the heats of phase conversion. 

Therefore, bearing (21) in mind, we have the local Nusselt number in conjunction with the heats of 

phase conversion or chemical reaction: 

~t t w - -  t~ ~ n (0.952rl + Pr) 

K 1 x {t+ so, (D,+  22> 

where the conditional heat-transfer coefficient in the value of Nu~ is equal to 

a*~ = q~ q- rWl~-. (23) 
t ~ - -  t~ 

The  a v e r a g e  v a l u e s  of the Nu,  Sh, and Nu* n u m b e r s  a r e  found by m u l t i p l y i n g  t h e i r  l oca l  v a l u e s  by 
f o u r  - t h i r d s .  

The method of relative correspondence [8] proposed by Motulevich enables us rather rapidly to de- 

rive the output characteristics of the boundary layer. For the base formula in the calculation of heat trans- 

fer by the method of relative correspondence, as was done in the calculation of uniform injection and suc- 

tion in the case of natural convection [9], we use the generalized Gross formula [i0] derived for the laminar 
boundary layer of forced convection: 

(24) 
qwo \ Mi ] p~ui \ . v ]  

For u I we take the characteristic velocity of laminar natural convection on impermeable vertical 

surfaces [ii]: 

u I = 5.17 v (0.952 + Pr)-i/2Gr~/e. 
X 

(25) 
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Fig. 3. Local convection heat t r ans fe r  on condensation of wa-  
t e r  vapor  f rom humid a i r  under conditions of natural  con-  
vection; a) exper iments  [16]; b) formula  (16); c) formula  
(30): 

LSt t w -  tao ~ -~ (0. 952q + Pr) 

X [ 1-}- DuLe (m~--m~)~];  

I1=0.508( 0.952Prq-pr )i/4{1--0"406(@) I/2(M21t/3 1--ml~v 

\ 1 - -  r n l ~  ) ~t  t w - -  l ~  0 ,952  -~- Sc 1 - -  mlw 

To find the total mass  flow of the active component 1 on a semipermeable  wall, we solve the problem 
of mass  t r ans fe r  in the case of natural  convection on a ver t ica l  surface in approximate  t e rms ,  with the 
motion in the l aminar  boundary l aye r  brought about exclusively  by the concentra t ion gradients .  In this case 
the integral  equations of momentum and diffusion have the form: 

h h 
d (mi - -  ml=) dy - -  ~ - ~ y  

dx,  
o o 

h 

d f u (rot-- ml~) @ = ---~D Omi + ~v~ (m~ --  ml~). 
dx , Og 

0 

(26) 

(27) 

The distr ibution of the veloci t ies  and the mass  f rac t ion of component 1 are  taken, respec t ive ly ,  f rom 
(8) and (10). With considerat ion of (7), the solution of (26) and (27) will then be: 

0.952+ - - - -  v 2 �9 5.~--3.93 \-sc-! 1--mtw p 1 - - r n ~ j  

Bearing in mind that the diffusion flow at the wall is given by Jlw = -pwD(0ml/Oy)  ]w, and that the 
gradient  of concentrat ion for  component 1 at the wall f rom (10) is equal to (am 1/aY)[w = -2 (mlw -m1~) (1  
/ 6 m ) ,  f rom (18), with the considera t ion of (28), we obtain: 

W , ~ = 0 . 5 0 8 9 ~ -  \ P '  1--tn,~ \ ~ /  {0.952+ So= l_--mi~,]W4' 
\ p 1 - -ml . )  

where G rxm = g3ml mlw - ml ~1 x3/v 2 is the concentra t ion Grashof  number .  

Substitution of (25) and (29) into (24) finally yields 

Nux - -1- -0 .406 ( ~ ~,/2( Mu.~I/a m,~-- rn , .  ( 1--rn,~,l'/2 
Nuxo \-S,c) M, ] 1 - -  m w, \ 1-- tnl~/ 

X ~m /ntw - -  tnla~ I/4 / 0.952 -+- Pr "~1/4 

I0  ; ~C- i----ml~ / ' 

(2s) 

(29) 

(30) 

where Nux0 is the value of the local Nusselt  number  on the impermeable  sur face .  
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With phase conversions or chemical reactions at the wall, the dimensionless conditional coefficient 

of heat transfer is calculated from (23): 

Nux _ 1 -t- mi, ~ --m:~ 
Nuxo l - -  rniw \ 1- -  tn:~ / ~t t~ - -  t~ I 

•  0,952+Pr 1 :/4 _ K - - 0 . 4 0 6 \ ~ ]  ] .  (31) 

Figure 1 shows a comparison of the approximate solution with the numerical calculation of Gill et al. 

[4], where the Dufour and Soret effects were neglected. The numerical calculation was performed for two 

cases: with consideration of the variability of the physical parameters of the mixture (p, #, k, Cp, and Sc 

= var) as functions of the temperature and the concentrations of the injected components; the parameters of 

the mixture were assumed to be constant, with the exception of the change in the density of the mixture, 

which was a function of the temperature and concentration. On injection of hydrogen into the air, the physi- 

cal paramete__rs of the mixture varied within the following limits: p= 0.0_8-0.9; # = 0.532-1.0; k =1.0-6.4; 

Cp = i-ii; Sc__= 1.0-6.1; Pr = 0.72. On injection of helium into the air p = 0.17-0_.9; # = 1.0-i.I; k = 1.0-4.7_5; 
Cp = 1.0-3.9__~;Sc = 1.0-5.95; Pr = 0.6. On injection of water vapor p= 0.63-0.9;_p = 0.67-1.0; k = 0.87-1.0;Cp 

= 1.0-1.7; Sc = 0.96-1.0; Pr = 0.9. On injection of carbon dioxide p = 0.9-1.28; # = 0.87-i.0;-k = 0.78-1.0; 

Cp = 0.94-1.0; Sc = 0.62-1.4; Pr = 1.0. 

On injection of hydrogen and helium the approximate solution of (16) yields somewhat understated 

results (the maximum divergence does not exceed 9%) in comparison with the numerical solution performed 

with consideration of the variability of the physical parameters of the mixture. On injection of CO 2 and 

with injection of liquid the results are virtually coincident. On injection of water vapor to a wall concen- 

tration of mlw = 0.i the solutions coincide; for large concentrations solution (16) leads to overstated data 

(the maximum divergence reaches 30% with a concentration mlw = 0.6). 

Even better agreement between the approximate solution (16) and the numerical results was found if 

we were able to assume the physical parameters of the mixture constant in the numerical results (with the 

exception of the change in the density of the mixture with variation in temperature and concentration). 

The numerical calculations [4] with a CO 2 concentration of 0.6 at the wall are debatable, since at 

these concentrations and at a temperature ratio of Tw/T ~ = I.i the solution leads to imaginary values of 

the heat-transfer coefficient, which is probably brought about by the inaccuracy of formula (2) in so far as 

it is used to calculate the concentration coefficient of the volume expansion for large mass concentrations 

of the injected gas, in the case in which that gas is heavier than the main gas. In [4], with (mco2) w > 0.6, 

the lift forces which are produced by the concentration gradient are therefore neglected in the calcula- 

tions. 

Figure 2 shows a comparison of the approximate solutions (22) and (31) for the average heat-transfer 

coefficients calculated with consideration of the heat of phase conversion (formula (21)) with the heat- 

transfer experiments in the case of water-vapor condensation from a mixture with air on vertical and 

horizontal tubes [12-14]. The height of the vertical tubes was used as the decisive dimension, and in the 

case of horizontal tubes it was the diameter. The physical parameters of the mixture were referred to the 

temperature and concentration at "infinity." The thermal conductivity, the viscosity, and the thermal-dif- 
fusion constant of the mixture were evaluated on the basis of the modified Buckingham potential [15]. The 

partial pressure of the water vapor at the wall was calculated from the average temperature of the solid 
wall. 

The limits of generalization for the experimental data were the following: the mass content of the 

air in the vapor is m a = 0.015-0.18, for the Kutateladze number we have K = 30-1600; for the pressure of 

the mixture we have Pm= 0.5-1.4 atmabs.; the Rayleigh number Ra L = GrLPr = 6 .103-108, the Lewis 
number Le = 0.56-0.9, and the Dufour number Du = 0.15-6.6. 

Comparison of the experiment on local convection heat transfer in the case of water-vapor con- 

densation from moist air [16] with the approximate solutions (16) and (30) is shown in Fig. 3. In the ex- 
periments of [16] the volume content of the vapor in the air varied from 1.5 to 16%. 
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As we can see from Figs�9 1-3, the approximate solutions yield good agreement both with the numerical 

calculations and the experiment over a wide range of decisive process parameters �9 

x and y 
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OL 
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is the Prandtl number; 

Subscripts 

W 

o o  

0 
1 
2 
X 

L 

d e n o t e s  the wa l l ;  
d e n o t e s  c o n d i t i o n s  ou t s ide  the b o u n d a r y  l a y e r ;  
d e n o t e s  a va lue  a t  the i m p e r m e a b l e  w a l l ;  
d e n o t e s  the a c t i v e  c o m p o n e n t  of the b i n a r y  m i x t u r e ;  
d e n o t e s  the i n e r t  c o m p o n e n t  o f  the b i n a r y  m i x t u r e ;  
d e n o t e s  a l o c a l  v a l u e ;  
d e n o t e s  a v a l u e  t aken  a long  the l eng th  L.  
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